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Linear hydrodynamics stability analysis is used to determine the influence of elasticity
on the jetting–dripping transition and on the temporal stability of non-axisymmetric
modes in co-flowing capillary jets. The critical Weber number for which axisymmetric
perturbations undergo a transition from convective to absolute instability is calculated
from the spatio-temporal analysis of the dispersion relation for Oldroyd-B liquids,
as a function of the density and viscosity ratios, and the Reynolds and Deborah
numbers. Elasticity increases the critical Weber number for all cases analysed and,
consequently, fosters the transition from jetting to dripping. The temporal analysis of
the dispersion relation for the m =1 lateral mode shows that elasticity does not affect
its stability.

1. Introduction
The controllable production of small flowing particles has been extensively

investigated because of its relevance to an immense field of practical and industrial
applications, ranging from chemical engineering to bio-industry. Different mechanisms
to produce dispersions of drops have been considered (Basaran 2002), including the
use of surfactants (Eggleton, Tsai & Stebe 2001), electrical forces (de la Mora 2007),
extensional flows (Taylor 1934; Cohen & Nagel 2002), thermal gradients, and,
more recently, concentrated photon irradiation (Schroll et al. 2007). Appropriate
extensional flows can be obtained by a co-flowing outer fluid, which reduces the
volume of the issuing drops and results in near monodispersity. Among the extensional
flows analysed, flow focusing (Gañán-Calvo 1998) is attractive because of its purely
hydrodynamic nature and continuous high-rate production. In the original flow
focusing device, a moderately high Reynolds-number liquid jet focused by a gas
breaks up into droplets about two orders of magnitude smaller than the source
liquid stream. Several alternatives to the original design have been considered over
the last few years. In particular, a double flow focusing arrangement has recently
been proposed to produce submicrometre liquid jets yielding nanoparticles (Gañán-
Calvo et al. 2007). A coherent understanding of the micro- and nano-scale interfacial
flows appearing in all these configurations is essential for a rational design and
manufacturing strategy.

When a liquid is injected from a nozzle into a fluid bath or stream, several breakup
modes are observed. For low injection velocities, droplets are formed periodically at
the nozzle and no jet is observed (dripping). As the flow rate increases, dripping gives
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way to jetting. While dripping produces drops at the nozzle, jetting features a long jet
that may extend several orifice diameters downstream and then breaks into droplets
through Rayleigh instability. Steady micro-jetting gives rise to a good productivity and
well-controlled small drop size. On the other hand, dripping gives rise to much larger
droplets under comparable Reynolds and Weber number conditions. Dripping usually
yields a highly monodisperse spray, but it may also exhibit bidisperse or polydisperse
distributions (Coullet & Mahadevan 2005). Therefore, it is of interest and importance
to understand the mechanisms of instability underlying the jetting–dripping (J–D)
transition, which would allow one to map that transition and determine the jetting
conditions yielding the smallest possible jet diameter.

Although the mechanism of jet breakup is highly nonlinear, a linear hydrodynamic
stability analysis may, however, be a helpful tool to predict breakup and instability
transition occurrence. Among the different oscillation modes with different azimuthal
wavenumbers m contained in natural small disturbances of capillary jets, axisymmetric
(m =0) modes are generally responsible for instability transitions and breakage
processes associated with surface tension (Leib & Goldstein 1986; Lin 2003). If
a jet issues from a stationary source, its behaviour is essentially determined by
whether the perturbations are convected downstream for all wavenumbers (convective
instability), or some of them can travel upstream while growing (absolute instability).
The relationship between these two scenarios (convective and absolute instability)
and the jetting and dripping regimes has been already reasonably established
(Huerre & Monkewitz 1990; Lin 2003; Guillot et al. 2007). The calculation of
the parameter values for which a basic flow undergoes a convective/absolute (C/A)
instability transition can be made analytically tractable at the expense of geometrical
simplifications. If the model includes all significant effects (viscosity, inertia, interfacial
tension forces, etc.), and the basic flow around which infinitesimal perturbations are
considered is realistic, then this approach provides reliable predictions for the J–D
transition.

Consider a manifold capillary comprising a liquid stream that envelopes a much
thinner inner capillary jet of a second liquid immiscible with the first. Assume that the
basic flow in the manifold capillary is characterized by constant velocity and pressure,
and can be considered as infinite in terms of the inner jet radius. These conditions
are approximately satisfied in several co-flowing configurations (Suryo & Basaran
2006; Guillot et al. 2007). An example is the flow beyond the orifice of a double flow
focusing arrangement (Gañán-Calvo et al. 2007), where the manifold capillary is in
turn focused by a third current of a gas forced through a small round orifice. An
analysis of the C/A instability transition for axisymmetric (m = 0) perturbations in
the limit of small Reynolds number showed that those perturbations are convected
downstream provided that the jet velocity exceeds a certain threshold (Gañán-Calvo
et al. 2007). Interestingly, this threshold depends on the viscosities and interfacial
tension but is independent of the jet radius (we call this ‘unconditional jetting’). This
theoretical prediction was confirmed by experiments using a double flow focusing
device (Gañán-Calvo et al. 2007).

It is well-known that non-Newtonian liquids can exhibit responses that differ
drastically from those of Newtonian liquids in most free-surface flows. Even for small
flow rates, the small dimensions of the capillary jets and the very large frequencies
arising, for instance, in flow focusing devices cause large strain rates and extremely fast
events capable of distorting the microstructure of the liquids (Eggers & Villermaux
2008), and thus inducing viscoelastic effects. For this reason, increasing attention is
being paid to non-Newtonian fluids in microfluidics. Indeed, the study of rheological
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effects is currently a vigorous area of microfluidic research (Stone, Stroock & Adjari
2004; Eaggers & Villermaux 2008).

The numerous rheological effects can probably be best elucidated by dissecting,
isolating and analysing them separately. In the present paper, we mainly focus our
attention on the influence of elasticity on the J–D transition appearing in co-flowing
jets of Oldroyd-B liquids. In the Oldroyd-B model (Joseph 1990), the elastic effects
increase with the Deborah number, which is defined as the ratio of the stress relaxation
time to the characteristic time. The characteristic time takes very small values for
micrometre and submicrometre jets produced by flow focusing or microfluidic devices,
and thus one obtains large values of the Deborah number even for small stress
relaxation times. Therefore, one may expect a significant influence of elasticity on the
J–D transition in flow focusing and microdevices operating with viscoelastic liquids.

Temporal linearized stability analysis for axisymmetric disturbances shows that an
Oldroyd-B jet exhibits a faster growth rate than a Newtonian one with the same
Ohnesorge number, indicating that non-Newtonian jets are more unstable than their
Newtonian counterparts (Brenn, Liu & Durst 2000; Funada & Joseph 2003). The
most unstable wavelength on a viscoelastic jet is shorter than on a comparable
Newtonian one, which implies that smaller drops would form for viscoelastic liquids.
This theoretical result has been confirmed by simulations (Zhou, Yue & Feng 2006).
The effect of a small elasticity on non-axisymmetric modes evolving in a single column
(Bauer 1986) and in a jet moving in an inviscid gaseous environment (Liu & Liu
2006) has also been examined. The results indicated that elasticity does not modify
the stability of these latter modes though, and only slightly affects their frequencies
and damping factors.

The J–D transition is controlled by the ratio of the time scale required for pinch-off
to a convective time scale. For large flow velocities, the convective time scale is smaller
than that required for pinch-off, transport dominates, and a jet forms. The fact that
viscoelastic properties accelerate the pinch-off in the linear regime (Brenn et al. 2000;
Funada & Joseph 2003) suggests that those properties make jetting take place at jet
velocities larger than in the Newtonian case (which might be the case in (Anna &
Mayer 2006). A spatiotemporal analysis is necessary to confirm that expectation, and
to determine the critical values of the Weber number for which the J–D transition
occurs.

In the present paper, we describe a linear spatiotemporal stability analysis for
axisymmetric (m =0) perturbations in a co-flowing system of two viscoelastic liquids
moving with the same velocity to determine the parametric values for which a C/A (J–
D) instability transition takes place. Our study extends the previous one by Funada &
Joseph (2003) in two directions: a spatiotemporal analysis is carried out, and elastic
effects on both the inner jet and the co-flowing liquid are considered. In addition, we
evaluate the influence of elasticity on the damping factor characterizing the evolution
of the lateral (m = 1) mode.

2. Linear stability
Consider a cylindrical jet of radius R moving in the axial direction into another

liquid co-flowing with the same velocity V (see e.g. Gañán-Calvo et al. 2007). The flow
configuration considered is sketched in figure 1. The perturbed shape of the jet, velo-
city, and pressure may be expressed as r = f (θ, z, t), v(r, t) ≡ [u(r, t), v(r, t), w(r, t)],
and p(r, t), respectively. In what follows, we shall make all the variables dimensionless
using the inner jet radius R, velocity V , time R/V , and momentum ρ1V

2 as the
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Figure 1. Sketch of the flow configuration considered. The circled region is where the
analysis presented here applies.

characteristic length, velocity, time, and pressure, respectively, where ρ1 is the inner
liquid density. Using a Lagrangian frame of reference moving with both fluids, we
propose the following dependence for the hydrodynamic fields and the interface
position:

vj (r, t) = ε{Uj (r), Vj (r), Wj (r)}ei(mθ+kz−ωt) + c.c., (2.1a)

pj (r, t) − δj1

We
= εPj (r)e

i(mθ+kz−ωt) + c.c., (2.1b)

f (θ, z, t) − 1 = εF ei(mθ+kz−ωt) + c.c., (2.1c)

where j = 1 and 2 stand for the inner jet and co-flowing liquid, respectively, m is
the azimuthal wavenumber, k = kr + iki the axial wavenumber, ω = ωr + iωi the
frequency, We= ρ1V

2R/σ the Weber number, σ the interfacial tension, and δij the
Kronecker delta.

The rheological behaviour of a viscoelastic material can be described by the
Oldroyd-B model (Joseph 1990):

(1 + τG) σik = 2μ0(1 + λG)Dik, (2.2)

where G[A] ≡ dA/dt − wA + Aw is the upper convected derivative operator, d/dt is
the material derivative, w is the antisymmetric part of D, σik is the (non-equilibrium)
stress tensor, μ0 the Newtonian viscosity, and Dik the strain rate tensor. The model
also involves the two rheological parameters τ and λ. For small perturbations around
our motionless (in the Lagrangian frame of reference) basic flow, the upper convected
derivative operator G can be approximated by the partial derivative ∂/∂t , and thus
the Oldroyd-B model yields

σik + τ
∂σik

∂t
= 2μ0

(
Dik + λ

∂Dik

∂t

)
, (2.3)

where τ and λ are the (dimensionless) stress and strain relaxation times. These
parameters are also known as the Deborah number and the (dimensionless)
retardation time, respectively. For λ= 0, (2.3) reduces to the Maxwell model, widely
used to describe a viscoelastic material in the linear response regime. If one consistently
assumes a temporal dependence of the form e−iωt for σik and Dik to the order ε, then



Viscoelastic effects on the jetting–dripping transition 253

the constitutive relation (2.3) to that order is

σik = 2μ0

1 − iλω

1 − iτω
Dik. (2.4)

The parametric values for which the system becomes temporally unstable are obtained
from the dispersion relation by imposing the condition of zero growth rate (ωi = 0),
and thus the critical motion corresponds to an harmonic oscillation of frequency ωr .
If the oscillation period is large in terms of τ and λ (|ωr |τ, |ωr |λ � 1), the liquid
can be regarded as Newtonian. On the other hand, if the oscillation period is of
the same order as or even larger than the stress relaxation time (|ωr |τ, |ωr |λ ∼ 1 or
|ωr |τ, |ωr |λ> 1), the elastic effects are significant and may affect the J–D transition. It
must be noted that large values of |ωr | lead to large values of the strain rate Dik and,
consequently, may yield a failure of the linear model (2.4).

If one introduces (2.1) and (2.4) into the equations of conservation of mass and
momentum, and neglects terms in ε2, one obtains

U ′
j + Uj/r + imVj/r + ikWj = 0, (2.5a)

−ρδj2 iωUj +P ′
j =

μδj2

Re

1 − iλjω

1 − iτjω
[U ′′

j +U ′
j /r −(m2+1)Uj/r2 −k2Uj −2imVj/r2], (2.5b)

−ρδj2 iωVj + imPj/r =
μδj2

Re

1 − iλjω

1 − iτjω
[V ′′

j + V ′
j /r − (m2 + 1)Vj/r2 − k2Vj + 2imUj/r2],

(2.5c)

−ρδj2 iωWj + ikPj =
μδj2

Re

1 − iλjω

1 − iτjω
(W ′′

j + W ′
j /r − m2Wj/r2 − k2Wj ), (2.5d)

where ρ ≡ ρ2/ρ1 and μ ≡ μ2/μ1 are the ratios between the density ρ2 and Newtonian
viscosity μ2 of the co-flowing fluid and the corresponding values ρ1 and μ1 of the
inner jet, and Re = ρ1V R/μ1 is the Reynolds number. The general solution to (2.5),
satisfying the regularity conditions

U1(0) = V1(0) = W ′
1(0) = 0 for m = 0, U1(0) + iV1(0) = W1(0) = 0 for m = 1,

(2.6a)

U1(0) = V1(0) = W1(0) = 0 for m � 2, U2 = V2 = W2 = P2 = bounded at r → ∞,

(2.6b)
can be written as

Uj (r) = i cj1 Θ ′
m(k r) + i cj2 Θ ′

m(kj r) + i m cj3

Θm(kj r)

kj r
, (2.7a)

Vj (r) = −m cj1

Θm(k r)

k r
− m cj2

Θm(kj r)

kj r
− cj3 Θ ′

m(kj r), (2.7b)

Wj (r) = −cj1 Θm(k r) − cj2 kj

Θm(kj r)

k
, (2.7c)

Pj (r) = −ρδj2ω cj1

k
Θm(k r). (2.7d)

Here, Θm is the modified Bessel function of the first kind Im if j = 1, and of the
second kind Km if j = 2, k1 = ±[k2 − iωRe (1 − iτ1ω)/(1 − iλ1ω)]1/2, k2 = [k2 −iωReρ/μ

(1 − iτ2ω)/(1 − iλ2ω)]1/2, and {cj1, cj2, cj3} are six arbitrary constants. Note that (2.7)
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is symmetric with respect to k1, while the real part of k must be positive to satisfy
(2.6b).

The non-slip condition {U1 = U2, V1 = V2, W1 =W2} at the interface r = 1 yields
a linear system of equations that allows one to obtain {c21, c22, c23} in terms of
{c11, c12, c13}. The condition of dynamical equilibrium at the interface r = 1 for the
normal and two tangential components leads to

P1 − P2 +
i(1 − m2 − k2)

Weω
U1 =

2

Re

(
1 − iλ1ω

1 − iτ1ω
U ′

1 − μ
1 − iλ2ω

1 − iτ2ω
U ′

2

)
, (2.8a)

1 − iλ1ω

1 − iτ1ω
(W ′

1 + ikU1) = μ
1 − iλ2ω

1 − iτ2ω
(W ′

2 + ikU2), (2.8b)

1 − iλ1ω

1 − iτ1ω
(imU1 + V ′

1 − V1) = μ
1 − iλ2ω

1 − iτ2ω
(imU2 + V ′

2 − V2), (2.8c)

where use has been made of the kinematic compatibility condition F = iUj (1)/ω to
eliminate F from (2.8a). The set of equations (2.8) constitutes a linear system of
equations for {c11, c12, c13}. The solvability condition Det(Δij ) = 0, with Δij being the
3 × 3 matrix associated with that system of equations, yields the dispersion relation

Sm(k, ω, ρ, μ, Re, We, τ1, τ2, λ1, λ2) = 0. (2.9)

A practical explicit expression of (2.9) cannot be provided here. A Mathematica

notebook containing the dispersion relation can be obtained upon request from the
authors.

The most important conclusion drawn from the temporal analysis presented in
Montanero & Gañán-Calvo (2008) for Newtonian liquids is that non-axisymmetric
(m 	= 0) perturbations possess negative growth factors over the whole parameter
space. Therefore, a transition from convective (jetting) to absolute instability for
m 	= 0 is not possible for the basic flow analysed. A natural question is whether
elasticity could modify the above result. To answer this question, we here perform a
temporal analysis (k real) of (2.9) for the lateral mode m = 1. For this purpose, we
re-write (2.9) in the form

Qm(k, ω̃, ρ, μ, Oh, τ1, τ2, λ1, λ2) = 0, (2.10)

where ω̃ = ω̃r + iω̃i ≡ We1/2ω and Oh ≡ We1/2/Re is the Ohnesorge number. This
is equivalent to choosing the capillary velocity Vc ≡ (σ/ρ1R)1/2 instead of V as the
characteristic velocity, an appropriate choice when the flow is described in our
Lagrangian frame of reference. It must be noted that this simplification is exclusive
to the basic flow considered here, where both the inner jet and the co-flowing liquid
move with the same velocity V .

Solutions to (2.10) in the complex plane (ω̃r , ω̃i) were found numerically for 0 <k < 1
and fixed values of the rest of the parameters. Because we were mainly interested
in finding possible transitions from stable (ω̃i < 0) to unstable (ω̃i > 0) perturbations,
(2.10) was carefully explored close to the ω̃i = 0 axis, while less attention was paid
to other regions of the (ω̃r , ω̃i)-plane. The roots of (2.10) were found by means
of the Newton–Raphson method, using as initial guess the value obtained from a
linear extrapolation of the two previous solutions. We considered as solutions those
satisfying the condition |Q1| < 10−10.

In this paper, we mainly focus attention on the J–D transition in the co-flowing
jets, explained in terms of the C/A instability transition for the axisymmetric mode
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(m = 0). In this case, an explicit expression for the dispersion relation (2.9) can be
provided:

S0 ≡ iω

[
N(k, k1, k2, μ

∗)

M(k, k1, k2, μ∗)
+ 2(1 − μ∗)

]
− Re∗

We
(1 − k2) = 0, (2.11)

N ≡ 2kμ∗k1k2 [K0(k2)I1(k1)k1 + I0(k1)K1(k2)k2] + k
[
k2(μ∗ − 1) − k2

1 + μ∗k2
2

]2

× I0(k)I1(k1)K0(k)K1(k2) + 4k3k1k2(μ
∗ − 1)2I0(k1)I1(k)K0(k2)K1(k)

− k2I1(k1)K0(k2)
{[

k4 + k2
1k

2
2 + k2

(
k2

1 − k2
2

)]
μ∗I1(k)K0(k)

+
[
k4

1 + k4(1 − 2μ∗)2 − 2k2k2
1(μ

∗ − 1)
]
I0(k)K1(k)

}
− k1I0(k1)K1(k2)

{[
k4(μ∗ − 2)2 + 2k2k2

2μ
∗(μ∗ − 1) + μ∗2k4

2

]
I1(k)K0(k)

+
[
k2

(
k2 − k2

1

)
+ k2

2

(
k2 + k2

1

)]
μ∗I0(k)K1(k)

}
, (2.12)

M ≡ k
{
[k2K0(k2)K1(k) − kK0(k)K1(k2)]

(
k2

1 − k2
)
I1(k)I1(k1)

+μ∗ [k1I0(k1)I1(k) − kI0(k)I1(k1)]
(
k2

2 − k2
)
K1(k)K1(k2)

}
. (2.13)

In the above expressions, k1 = ±
√

k2 − iωRe∗, k2 =
√

k2 − iωRe∗ρ/μ∗, Re∗ ≡
Re(1 − iτ1ω)/(1 − iλ1ω), and μ∗ = μ(1 − iτ1ω)/(1 − iτ2ω)(1 − iλ2ω)/(1 − iλ1ω).

To determine the parameter values for which the basic flow undergoes a C/A
instability transition, one should explore the response of the system to perturbations
characterized by a complex axial wavenumber k (spatio-temporal analysis), observed
by a fixed observer anchored at the nozzle (Huerre & Monkewitz 1990). To change the
frame of reference from a travelling observer to a fixed one, we just need to replace
the wave frequency ω by ω′ − k in the dispersion relation (2.11) (Leib & Goldstein
1986).

A localized initial distortion spreads in the fluid domain bounded by two fronts
moving with velocities v∗

+ and v∗
−. If the distortion is the superposition of perturbations

proportional to ei(kz−ω′t) = eki(vt−z)ei(kr z−ω′
r t), then v∗

± are calculated as the extremal
values of the envelope velocity v = ω′

i/ki of those perturbations (van Saarloos 1987,
2003; Guillot et al. 2007). The C/A instability transition occurs for parameter points
for which the velocity v∗

− of the back front vanishes. As demonstrated in the Appendix,
this criterion is equivalent to the so-called saddle-point rule, which establishes that the
C/A instability transition occurs when there is at least one solution of the dispersion
relation satisfying dω′/dk = 0 (zero group velocity) with ω′

i = 0 (Briggs 1964; Huerre &
Monkewitz 1990). Once the parameters {ρ, μ, Re, τ1, τ2, λ1, λ2} are set, one has to find
the value of the Weber number for which v∗

− = 0 or, equivalently, dω′/dk =ω′
i = 0. The

latter condition can be formulated in terms of four coupled transcendental equations
Fi(kr, ki, ω

′
r , We) = 0 (i = 1, 2, 3, and 4) for the set of variables {kr, ki, ω

′
r , We}. In this

work, the roots of that system of equations were found numerically by the secant
method within the variable space volume delimited by the previous solution and that
obtained from a linear extrapolation of the two previous ones. We considered as
solutions those satisfying the condition |Fi | < 10−10 (i =1, 2, 3, and 4).

3. Results and conclusions
Viscoelastic liquids in co-flowing devices usually have similar densities (ρ � 1)

and retardation times at least one order of magnitude less than the relaxation times
(λj � τj ) (see e.g. Brenn et al. 2000 or Funada & Joseph 2003 and references therein).
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Figure 2. Growth factor ω̃i as a function of k for μ= 1 and for Oh = 10 (solid lines) and
Oh = 100 (dashed lines): (a) τ2 = 0 and different values of τ1, (b) τ1 = 0 and different values of
τ2, as indicated by the labels. The black curves correspond to overdamped motions, while the
grey lines labelled 103 correspond to oscillatory motions.

Because of the high dimension of the parameter space, we explored it partially by
considering the cases ρ = 1 and λj = 0 (Maxwell model). The temporal analysis of
(2.10) for the lateral mode m = 1 is presented in § 3.1, while in § 3.2 we show the
spatiotemporal analysis of (2.11) for the axisymmetric mode m = 0.

3.1. Temporal analysis of the lateral mode

For non-surrounded jets (ρ = μ = 0), it is well-known that axisymmetric (m = 0)
perturbations are stable for k > 1 and unstable for 0 <k < 1. For this reason, in the
present study we calculate the growth factors characterizing the dominant lateral
motions of co-flowing jets within the interval 0<k < 1. The values of the Ohnesorge
number considered correspond to high-Newtonian-viscosity liquids, as are usually
employed in experiments. The most important conclusion drawn from the results
shown in figure 2 (and others not presented here) is that lateral perturbations possess
negative growth factors within the region of parameter space explored, and hence
elasticity does not modify their stability. For Oh = 100, the influence of elasticity is
negligible even for large values of the Deborah number. The damping factor slightly
decreases as τj increases for Oh = 10. A transition from overdamped to oscillatory
motion takes place between τj = 100 and 103 for that value of the Ohnesorge number.

3.2. Spatio-temporal analysis of the axisymmetric mode

The main aim of the present work was to determine the influence of elasticity on the
J–D transition in a capillary flow consisting of two co-flowing liquid jets moving with
the same velocity. For this purpose, the critical Weber number for which the C/A
instability transition occurs is obtained as a function of the other parameters. When
working with millimetric jets, the Deborah number usually takes values less than
unity. Figure 3 shows the ratio between the critical Weber number We for 0 � τj � 1
and its value We0 for the Newtonian case (τ1 = τ2 = 0). Elasticity slightly increases the
critical Weber number. Similar results are obtained when the viscoelastic material is
the inner (solid lines) or outer (dashed lines) jet. The effect of elasticity increases as
the Reynolds number decreases.

For micrometre and submicrometre jets, the Deborah number may take large values
even for small stress relaxation times. Figure 4 shows the J–D transition curves for
τj = 0, 10, 102, 103, and 104, and different values of the Newtonian viscosity ratio μ.
The main result is that elasticity increases the critical Weber number significantly
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Figure 4. Critical value of the Weber (solid lines) and capillary (dashed lines) numbers as a
function of the Reynolds number for μ= 0.1, 1, and 10: (a) for τ2 = 0 and different values of
τ1, (b) τ1 = 0 and different values of τ2, as indicated by the labels.
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Figure 5. Critical value of the capillary number as a function of the viscosity ratio for (a)
Re = 10−4 and (b) 0.1. The solid (dashed) lines are the results calculated for τ2 = 0 (τ1 = 0) and
different values of τ1 (τ2) as indicated by the labels.

(solid lines) for small Re, which is the most relevant case experimentally. Similar
trends are observed for all viscosity ratios analysed. In addition, elasticity plays a
similar role in both the inner and outer jet. The dashed lines correspond to the
critical values of the capillary number Ca ≡ We/Re = μ1V/σ . In the limit Re → 0, the
transition from dripping to jetting takes place in a Newtonian system if and only if Ca
exceeds a critical value, independently of the jet radius (unconditional jetting) (Gañán-
Calvo et al. 2007). Elasticity does not modify this feature, although it increases the
critical value. This can also be observed in figure 5, where we show the dependence of
the critical capillary number on the viscosity ratio for small-Reynolds-number flows
(submicrometre or nanoscale), in particular for Re = 10−4 and 0.1. For Re = 10−4, we
only present results for β > 0.05 because our algorithm did not satisfactorily converge
to the solution sought in the limit Re → 0 and μ → 0 (creeping flow equations are
required to properly address this limit case).

To summarize, one can assert that elasticity encourages the instability of
infinitesimal perturbations in capillary co-flowing jets moving with the same velocity.
It increases the growth rate of the temporally unstable axisymmetric mode (Brenn
et al. 2000; Funada & Joseph 2003), decreases the damping rate of the temporally
stable lateral mode (figure 2), and favours the transition from the convective (jetting)
to absolute (dripping) instability of the spatiotemporal axisymmetric mode (figures 3
and 4). Note that the latter effect does not imply that the use of viscoelastic liquids
necessarily yields the production of drops larger than their Newtonian counterparts.
Indeed, the size of the drops is the result of a highly nonlinear breakup process
not considered in the present analysis. With increasing deformation, non-Newtonian
liquid behaviour leads to a retardation of breakup and to the formation of a structure
of drops connected by thin filaments (Eggers & Villermaux 2008), which may end in
drops smaller than their Newtonian counterparts for the same Weber number.

Partial support from the MCYT (Spain) through Grant No. DPI2007-63559 is
gratefully acknowledged.

Appendix
The criterion for determining the C/A instability transition originally proposed

by van Saarloos (1987, 2003) and recently used by Guillot et al. (2007) is based on
the analysis of the propagation front velocity, which is found to be very intuitive
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and immediately understandable in physical terms. This is an alternative to the so-
called saddle-point criterion proposed by Briggs (1964) and used by most workers in
capillary flows, and capillary jets in particular. Although van Saarloos’s criterion may
be preferable for capillary jets, it has been used without proving its equivalence to
the saddle-point criterion. We prove below the equivalence of the two criteria.

Consider a quasi-one-dimensional dispersive system whose dynamical response
is the combination of small perturbations proportional to ei(kz−ωt) = eki(vt−z)ei(kr z−ωr t),
with k = kr + iki and ω = ωr + iωi related by a dispersion relation ω(k). A localized
initial distortion spreads in the fluid domain bounded by two fronts moving with
velocities v∗

+ and v∗
− calculated as the extremal values of the envelope velocity

v =ωi/ki of the small perturbations, i.e. v∗
− = ω∗

i /k∗
i where (ω∗, k∗) is a solution of the

dispersion relation for which ∂(ωi/ki)/∂kr =0 and ∂(ωi/ki)/∂ki = 0. Straightforward
differentiation shows that the above equations are equivalent to ∂ωi/∂kr |k=k∗ =0
and v∗

− = ω∗
i /k∗

i = ∂ωi/∂ki |k=k∗ , respectively. The criterion proposed by van Saarloos
(1987) establishes that the C/A instability transition occurs when v∗

− = 0. Therefore,
the system exhibits C/A instability transition at the point in the parameter space
where the dispersion relation has a solution (ω∗, k∗) for which

∂ωi

∂kr

∣∣∣∣
k=k∗

=
∂ωi

∂ki

∣∣∣∣
k=k∗

= ω∗
i = 0. (A 1)

Assuming that ω =ω(k) is an analytic function, the Cauchy–Riemann equations
establish that ∂ωr/∂kr = ∂ωi/∂ki and ∂ωr/∂ki = −∂ωi/∂kr . From these equations and
(A 1), one obtains dω/dk|k=k∗ =ω∗

i = 0, which coincides with the classical saddle-point
criterion (Briggs 1964; Huerre & Monkewitz 1990).
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